MSK144 QRP and ES0UG (/8)

This week some people from here work from Estonia under the call ES0UG (and ES0UG/8). Since there are no good ES conditions currently we tried MSK144 meteor scatter. I did not think there will be a lot success since i can only run 25W ERP. But finally i god some of their CQ.

ES0UG/8 calling CQ in MSK144 from KO18

During my lunch break i did not have success. In the evening we tried again and were able to complete the QSO to KO18 field within about 1.5h.

Since yesterday evening the crew is qrv from the next island in KO19. We tried again in MSK144 and this time we had bursts rather early. It still took more than an hour to complete the QSO and this time i have a nice screenshot.

ES0UG in KO19

Since i did not expect that it will work at all i am quite happy with my first two QSO via MS. I also got some spots from G3SHK. Many thanks!

9cm DB6NT kit

Now i started soldering the 9cm transverter kit that was in the shelf since years. The filter caps look already a bit oxidated. But soldering still worked fine. The new 9cm will get into a box together with 13cm at some time.

9cm DB6NT MK2 transverter partly assembled

[Update]
finished…

9cm transverter

G4DDK Iceni 70cm transverter

I assembled the Iceni 70cm transverter kit from G4DDK. Instead of the ADE-13 i used a ADE-751MH+. Sam was so kind and sponsored one of his mixer samples he used for testing. Unfortunately the manufacturer of the mixers uses different pinouts for almost every type. In this case i had to swap RF and IP ports. The good one: It is not difficult with the layout. In the picture you can see the short semirigid.

G4DDK Iceni transverter for 70cm


The next picture shows some IM3 measurement for the RX part of the transverter. The estimated input IM3 point is around 0dBm now (21dB gain).
The P1dB is about -9dBm (2x -12dBm).

Iceni ADE-751 IM3


I also checked the output signal. The 2nd harmonic is about 53dB below wanted signal and the LO suppression is about 58dB. So some extra filter might be required to the comply with regulations.
Overall i am very satisfied with this transverter block. With the alternative mixer the performance is even better than it was before.
Next i need to add a amplifier and other unimportant things like sequencer, RX/TX-switch, chassis and so on ;)

A small VHF/UHF driver

I was searching for a small driver for 2m in order to have enough power for my microwave transverters. I usually drive them with about 500mW. Since i have a transverter block with about 0dBm output it needs some gain. Again i found something from China. The advertisement told something about 1.5W, the pictures showed a PCB with a print 35dB/3.2W. However, i thought it could be good enough to get 0.5W out of it.

A small VHF/UHF amplifier


When the device arrived i noticed that the manufacturer milled the top of the two amplifier IC. Very funny that the guys there try to save their designs from unwanted copy ;)
At the input there is a 6dB attenuation pad which are followed by two amplifier stages of unknown type. The first stage is supplied via a 5V regulator, the second one is connected to the supply input directly. I used 12V to do some measurements.
The first action was to know the gain of the circuit. I wanted to see if it is really working from 1 to 700MHz.
In the picture you see the little noisy measurement. The drive from the analyzer was set very low.

Gain of small VHF/UHF PA


From the gain curve it can be seen that the device is probably not working that well at the lowest end of the shortwave. But at least from 30MHz on it should be usable. Towards upper frequencies the gain is decreasing a lot but still 27dB at 700MHz. For the 2m band roughly 43dB gain is achieved and about 33dB in the 70cm band.
Finally i wanted to know which output power can be achieved in the amateur radio bands.

VHF/UHF PA output power


At about 1W output the output always gets compressed. You might add about 0.4dB on 70cm and 0.3dB on 2m to my measurements since the graph does not include the attenuation of the output cable. For me it means that the amplifier should work well for my purpose.

A simple 9cm monitoring receiver

Just for fun i tried to collect some components from the shelf and plugged together a simple monitoring receiver for 9cm.
I have a DF9NP PLL OCXO for 2592.2MHz and a pipe-cap filter tuned to 3400MHz. From China i ordered a wideband LNA some month ago. It has about 15dB gain on 9cm. The mixer is a ZEM-4300+ (+7dBm LO). The setup results in a IF of 807.8MHz which is received with an RTLSDR and the very nice GQRX software.
With a short wire attached to the input of the LNA i was able to receive the local 9cm beacon DM0TUD.

9cm monitor hardware


GQRX receiving DM0TUD 9cm beacon

Searching for some FreeDV QSO partner on VHF

Since i use Quisk for my HiQSDR i found it interesting to experiment with FreeDV again. Quisk can directly support using the FreeDV API and work in this digital mode without building lots of cables. Since i wanted to try the latest mode 700C i had to compile the library from the scratch and add the mode to the configuration of quisk. Below you can find recordings of my CQ call in the modes 1600 and 700C which were made loopback.
Now i search for a QSO partner preferably on 2m somewhere in the area around JO61. I can work relatively well direction southeast. So east OK might be good.

Mode 1600

Mode 700C

Please remember the 700C mode uses only 1kHz of bandwidth.
If you are interested in some tests just send me a email to dh5ym@darc.de

A chinese PA for 6cm

Some posts ago i wrote about my new 6cm transverter. I already did a few QSO and i got a 10W PA for a good price. Unfortunately this PA needs 1W of Input and the transverter gives maximum of 250mW output. So a small “driver” is needed. I was researching the options but found no easy solution that also fits my budget constraints. Then i saw some amplifiers sold as WLAN amp. Usually those are for 2.4GHz but i thought if there are some for the one band there are probably also some for the 5GHz band. During the search i found the nice Amp on the picture below that is sold as an amplifier for video transmissions for about 22Euro. It is specified with 3.5/4.5W. But whatever output power for the price i thought i cannot do wrong a lot.

A chinese 5.8GHz PA

When the device arrived i had to find out the supply voltage. In fact it works with 12V and a first test confirmed it has some gain. The bad thing was that the connectors were reverse SMA and for each connector it was quite some gap between the connector and the PCB. So i thought, “thats a strange matching method” ;)
After removing the soldered shield on top of the PCB one of the screws for mounting the heatsink also came out.
The semiconductors used in the PA are 2x Skyworks SE5004L with a P1dB of 30dBm typical and 34dBm max. So i thought 2W should be possible at least. The gain is specified with 32dB. At the input of the PA is a pi-attenuator.
Later i soldered some nice SMA jacks and then the PA went to storage for quite some while.

The “inner values” of the small amplifier

Now i found some minutes to remove the attenuator and do some raw measurement of the output power. The gain of the amplifier is about 28..29dB. I did not measure the cable attenuation exactly so do not nail me down on the last dB.
The input vs output figure you can find below. The P1dB is about 2.5W. So considering the samples to be typical there is quite some loss on the PCB. But even in that case for the given price its a nice thing.

5.8GHz video PA output power

Almost a antenna feed for 6cm …

Not all things work out… I was searching for some nice feed for a offset dish to be used for 6cm narrow band. In the internet i found a nice version from Russia.
It was announced for the 5GHz WLAN band without dedicated specification of the exact frequency.
For 40 Euro including shipment it was ordered and after only 2 weeks in transit (russian saying tells: For bad children Santa Claus sends the gifts by russian post… ;) ) and 1 week in customs i finally got my russian present.

5GHz horn from Russia


Measuring the input matching shows that its well in the middle of the lowest 5GHz WLAN band.

WLAN horn matching measurement


Far away from 5760MHz. But ok, lets try. First i removed the N connector.

5GHz horn from Russia


The connector with the radiator seems to be a robust construction. I tried to shorten it step by step. Unfortunately it happened what could be expected. The feed can be de-tuned to about 5.5GHz but above that the matching vanishes. Probably the distance to the backside of the horn is too big. So this one was a fail. Fortunately i can still use it for WLAN if i make the radiator a bit longer again. If you want to use the lowest of the 5GHz bands it is really a nice and very solid construction.

MD380 DMR radio

I have a Tytera MD380 DMR transceiver now. Flashed latest MD380tools and database yesterday and hope to make a first qso soon. A mmdvm hotspot is in the pipeline but i still need to connect a transceiver.

TYT MD380 DMR radio